If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3t^2+30t+73=0
a = -3; b = 30; c = +73;
Δ = b2-4ac
Δ = 302-4·(-3)·73
Δ = 1776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1776}=\sqrt{16*111}=\sqrt{16}*\sqrt{111}=4\sqrt{111}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-4\sqrt{111}}{2*-3}=\frac{-30-4\sqrt{111}}{-6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+4\sqrt{111}}{2*-3}=\frac{-30+4\sqrt{111}}{-6} $
| 8g=-64 | | -2-16q=18-13q-7q | | 16=4(n-16) | | 9a+5a-10a=16 | | 13w=6 | | 10(x+1)=5(2x+4) | | -40=5g | | 4b-7=7b-10 | | 2x+1=-2x-35 | | ?x10=0.2 | | 12s=13+13s | | 6g-4+3g=8g-8 | | a=4+21 | | -64=16t^2 | | 5.7y+18.65=-18.1-9y | | 2(x+2)-9=5x-3(1+x) | | 18w-15w=8 | | x-3+5=10+2x | | 25z+1.50=38.50 | | -3r-3r=-12 | | p+15=-20-6p | | 13s+14s−15s–4=–20 | | 6b-21=81 | | 13s+14s−15s−–4=–20 | | -10.23+11.4d=-5.52+10.2d-15.51 | | 4+5x*6=-14 | | 3(x-2)=13+2(x+3) | | (X-4)×(x+2)×(x-0.8)=0 | | 16n-15n=11 | | x(x-10)(5x+20)(x2-4)=0 | | 5=(x/4)+8 | | -32=-16+x |